Formulas Required for the FCAT

Density (D)
$$= \frac{\text{mass (g)}}{\text{Volume (cm}^3)} \qquad \qquad D = \frac{m}{V}$$

Average Speed
$$(\bar{v}) = \frac{\text{distance}}{\text{time}}$$
 $\bar{v} = \frac{d}{t}$

Work (W) = Force (N) x distance (m)
$$W = Fd$$

Percent efficiency (e) =
$$\frac{\text{Work out (J)}}{\text{Work in (J)}}$$
 x 100 % e = $\frac{\text{W}_{\text{out}}}{\text{W}_{\text{in}}}$ x 100

Acceleration (
$$\bar{a}$$
) = $\frac{\text{change in velocity (m/s)}}{\text{time taken for this change (s)}}$ $\bar{a} = \frac{v_f - v_i}{t_f - t_i}$

Force in newtons (F) = mass (kg) x acceleration (m/s²)
$$F = ma$$

Momentum (p) = mass (kg) x velocity (m/s)
$$p = mv$$

Wavelength (
$$\lambda$$
) = $\frac{\text{velocity (m/s)}}{\text{frequency (Hz)}}$ $\lambda = \frac{v}{f}$

Frequency in hertz (f) =
$$\frac{\text{number of events (waves)}}{\text{time (s)}}$$
 f = $\frac{n \text{ of events}}{t}$

Units of Measure Often Used in Formulas

Mass	Length	Time	Force	Energy	Frequency
g = gram kg = kilogram	cm = centimeter m = meter	s = second	N = newton	J = joule (newton-meter)	Hz = hertz